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Abstract  

The durability of infrastructure depends on the stability and performance of the geosynthetics used. 

Among the factors affecting this durability, exposure to chemically aggressive environments is crucial in 

the progressive deterioration of these materials. Therefore, understanding the impact of such 

environments on geosynthetics is vital for ensuring the safety and longevity of civil engineering 

structures. To investigate the degradation mechanisms of polyester geosynthetics in acidic conditions 

and assess their durability, an accelerated aging protocol was employed. This study examines the impact 

of an acidic environment, simulated through an immersion test in a sulfuric acid solution with a 

concentration of 3.1 mol/L, on a polyester geotextile over periods of one, five, and six months, with a 

constant temperature of 80°C. Density changes were measured using a gas pycnometer, surface 

morphology was analyzed via scanning electron microscopy, and mechanical properties were assessed 

through tensile testing. The results revealed a significant reduction in tensile strength at advanced aging 

stages, with a decrease of up to 18% by the end of the test. This deterioration in mechanical performance 

correlates with changes in the geotextile's density and surface morphology. 
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1 Introduction  

Geosynthetic products are the solution to extending the service life of civil and geotechnical structures 

while ensuring their safety during operation. These relatively recent products offer several advantages 

over traditional construction materials and techniques, particularly in terms of reducing the time and cost 

required to build structures. A wide range of geosynthetic products is currently available to meet the 

diverse requirements of structures, with geotextiles playing a significant role. Geotextiles are one of the 

most significant geosynthetics used in reinforcement systems. 

In recent years, durability has become a major challenge, especially when the functional longevity of 

geosynthetic materials—often expected to exceed 50 to 100 years—is crucial in infrastructure 

applications (Sarsby, 2007). In underground applications, these products are often exposed to a variety 

of degradation agents for extended periods, which can lead to premature failure (Naga et al., 2025). The 

most common deterioration mechanisms include hydrolysis, oxidation (thermo-oxidation and photo-

oxidation) and biological processes. These agents are the main cause of chemical aging. Additionally, the 

loss of chemical additives incorporated into the polymer matrix (in the event of contact with liquids), the 

absorption of substances from the external environment (which can lead to swelling), and creep, are 

factors contributing to physical aging. The interaction between geosynthetic products and their operating 

environment is a key consideration in their design, with the aim of achieving long-term performance that 

is consistent with the intended service life of the structure. 

Polyethylene terephthalate (PET) is some of the most widely used polymers in geosynthetic 

manufacturing due to their excellent mechanical properties (van Schoors, 2007; Maddah, 2016). 

However, the resistance of polyester to aqueous environments is limited. Previous studies have 
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demonstrated that the deterioration of PET is primarily due to hydrolysis (Woodard and Grunlan, 2018), 

which is highly influenced by the pH of the environment (Nguyen-Tri et al., 2014; Ducoulombier et al., 

2016; Krimi et al., 2016a; Cho et al., 2020; Naga et al., 2023) .  

Extensive research has investigated the degradation of geosynthetics, predominantly concentrating on 

evaluating their mechanical and physical properties at the macroscopic level (Liu et al., 2013; Carneiro 

et al., 2014; Vieira and Pereira, 2015; Guimarães et al., 2017; Carneiro et al., 2018; Sardehaei et al., 2019; 

Naga et al., 2024a, 2024b). These investigations have elucidated the overall effects of various degradation 

agents, including chemical exposure, mechanical stress, and adverse environmental conditions. 

Nevertheless, the fundamental mechanisms driving these changes at the micromolecular level remain 

insufficiently explored. A comprehensive understanding of these structural and physicochemical 

transformations is essential to establish direct correlations between alterations in microscopic properties 

and reductions in the macroscopic performance of geosynthetics.  

To address this research gap, accelerated aging tests were conducted in the laboratory, followed by multi-

scale characterization integrating mechanical, physical, and microscopic analyses. Macroscopic 

evaluations were conducted using tensile testing and physical assessment with a pycnometer, alongside 

microscopic evaluations employing a scanning electron microscope. The geosynthetics were immersed 

in a controlled acidic environment (3.1 mol/L sulfuric acid at 80°C) for a specified duration. Although 

these severe testing conditions (elevated temperatures and high concentrations of chemical agents) are 

rarely encountered in real-world applications, they are intentionally applied to accelerate the degradation 

mechanisms of polymers (Broughton and Maxwell, 2007). As noted by Rowe et al. (2009), accelerated 

aging tests offer a practical approach to gaining insights into the long-term performance of these 

materials. Accelerated aging test provide an effective method for assessing changes in material properties 

over a short period within a reasonable timeframe.  

The objective of this study is to enhance the understanding of the impact of an acidic environment on the 

mechanical and physical properties of geosynthetics, as well as on their surface morphology. This 

research aims to elucidate the interactions between the polymer structure and aggressive environmental 

conditions. Identifying degradation mechanisms at both the macroscopic and micromolecular levels is 

crucial for a better understanding of the long-term performance of geosynthetics. This knowledge enables 

the optimization of material selection, adaptation of their chemical formulation, and improvement of their 

design to enhance resistance to aggressive environments. Ultimately, this research contributes to more 

accurate predictions of the durability of geosynthetics and the optimization of their use in infrastructures 

exposed to severe conditions, thereby ensuring sustainable and efficient solutions in the fields of civil 

engineering and geotechnical engineering. 

2 Materials and methods 

2.1 Geotextile characteristics 

The geosynthetic investigated in this study is a knitted geotextile made from polyethylene terephthalate 

(PET). The key properties of the geotextile in its as-received state are presented in Table 1. 

Table 1. Main characteristics of the geotextile (reference specimens) 

Parameters Standards / Techniques Quantity 

Structure  Woven geotextile 

Polymers  Polyester  

Tensile properties  ASTM 4595 (ASTM 4595, 2023)  

Ultimate tensile strength (MD-CMD)   71.78(±4.07) – 68.18 (±3.84)   kN/m 

Elongation at ultimate tensile strength 

(MD-CMD)  

 14.90 (±0.54) - 15.77 (±0.58) % 

Physical properties    

Unit area mass a ASTM 5261 (ASTM 5261, 2018) 250 g/m2 

Density  Using a gas pycnometer 1.4758 g/cm3 

Fibers diameterb Using SEM 21μm 
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In brackets is the standard deviation. 
aInformation provided by the manufacture. 
bInformation found by scanning electron microscopy 

 

2.2  Accelerated aging test 

In this study, a woven geotextile was submerged in a diluted sulfuric acid solution with a concentration 

of 3.1 mol/L, maintained at a steady temperature of 80°C±2. The immersion tests were conducted in 

darkness to prevent UV exposure to the samples and were carried out over different durations of one 

month, five months, and six months. Although these harsh test conditions (temperature and chemical 

concentration) are not typically encountered in real-world scenarios, they are employed to accelerate the 

degradation of the polymers (Broughton and Maxwell, 2007).  

To maintain a consistent solution concentration, daily pH measurements were taken, and adjustments 

were made every 20 days. After the tests, the specimens were rinsed with deionized water and dried at 

40°C. Prior to testing, all specimens were preconditioned in the dark at 23°C for at least 24 hours.  

2.3 Evaluation of damage suffered by the woven geotextile 

2.3.1 Assessment of geotextile density 

The density of the geotextile fibers was determined at room temperature using a gas pycnometer 

(Micromeritics AccuPyc II 1340) (Figure 1a), with a precision of 0.0001, utilizing helium as the 

measuring gas. The products were cut into small fragments, as shown in Figure 1b, to fit into a 10 cm³ 

cell. An average density was calculated from five measurements.  

 

Figure 1. Density measurement: (a) density measuring instrument; (b) geotextile fibers. 

2.3.2 Surface morphology 

Surface degradation resulting from the aging test was examined using a QUANTA 650 scanning electron 

microscope. Imaging was performed in secondary electron mode using the Everhart-Thornley Detector 

(ETD) at an accelerating voltage of 3 kV and a working distance of 10 mm. This mode was selected for 

its sensitivity to topographical variations, allowing for detailed visualization of the surface changes in the 

material after exposure to the harsh environment. 

 

2.3.3 Mechanical behavior     

The damage experienced by the geotextile during the aging tests was evaluated through tensile tests in 

accordance with ASTM 4595. These tests were conducted using the INSTRON 5900 universal testing 

machine (Figure 2). Each sample tested comprised a minimum of five specimens with a 95% confidence 

interval calculated according to Montgomery & Runger, 2018. In this study, the tensile tests were carried 

out on wide strips with a strain rate of 10 ± 3% per minute and a preload of 1% maximum tensile strength. 

Mechanical behavior is evaluated by measuring the ultimate tensile strength determined from the force-

elongation curve obtained during a tensile test. 
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Before the tensile test, all specimens were preconditioned for at least 24 hours at 21 ± 2°C and 50–70% 

relative humidity (RH), which were also the atmospheric test conditions.  

 

   

Figure 2. Tensile test machine.  

 

3 Results and discussion  

3.1 Analysis of geotextile density evolution 

Figure 3 illustrates the evolution of the density of geotextile fibers after exposure to an acidic environment 

for different periods: one month, five months, and six months. The values of density are expressed as the 

percentage of the initial density retained, meaning the ratio between the density measured after 

degradation and the density of the unexposed (virgin) sample. The analysis of the results reveals a gradual 

increase in density over time, although the extent of this increase varies with the duration of exposure. 

After one month of aging, a modest increase in density is observed, amounting to a 1.5% rise compared 

to the initial value. This suggests that at the onset of exposure, the effects of the acidic environment are 

limited, inducing only minor modifications in polymer density. Conversely, after five months of aging, a 

significant increase in density, up to 25%, is observed. This substantial increase can be attributed to 

several physico-chemical mechanisms affecting the material's structure, particularly the reduction in the 

amorphous phase content due to hydrolysis reactions (Mathur et al., 1994). The amorphous regions of 

the polymer, characterized by a disordered arrangement of chains, are particularly vulnerable to 

hydrolysis reactions due to their relatively large free volume compared to the crystalline phase. This 

susceptibility can result in the scission of polymer chains. Fragments of the cleaved polymer chains may 

infiltrate the surrounding environment, thereby increasing the density of the polymer (Mathur et al., 

1994). This increase in density can also be attributed to chemicrystallization, which directly contributes 

to the increase in density by increasing crystallinity (Xiong et al., 2016). This phenomenon is further 

explained by the fact that under the influence of hydrolysis reactions, the initially entangled polymer 

chains become more mobile, facilitating their rearrangement into a more ordered configuration, thus 

leading to an increase in crystallinity (Perthué et al., 2016; Forsgren et al., 2020; Salehi and Pircheraghi, 

2021; Suljovrujic et al., 2021; Blivet et al., 2021; Rapp et al., 2022) and, consequently, an increase in the 

density of the geotextile. Furthermore, the test temperature could play a crucial role in these structural 

transformations by activating the mobility of macromolecular chains and promoting their reorganization 

into a crystalline phase (secondary crystals), a process known as recrystallization or thermal activation 

(Ketsamee et al., 2023). A sudden decrease of approximately 12% compared to the density recorded after 

five months of aging was observed, although the density remained higher than that of the intact sample. 

This decrease could be explained by the fact that the effects of chemicrystallization and thermal 

recrystallization reached a maximum threshold after five months of exposure. Beyond this period, the 

crystalline phases begin to degrade under the prolonged effect of the acidic environment, leading to a 

reduction in crystallinity and, consequently, a decrease in the overall density of the material. Similar 

results were observed by (Mathur et al., 1994). These mechanisms underscore a correlation between the 

increase in crystallinity and the decrease in the amorphous phase, as illustrated in Figure 3, thereby 
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demonstrating the interaction between chemical degradation and structural rearrangements that result in 

significant changes in the material's physical properties, particularly its density. The demonstration 

illustrated in Figure 3 remains probable until they are proven through other analyses, which will be the 

subject of our future research. 

 

Figure3. Density evolution and corresponding microstructure schematization over aging time.  

3.2 Surface morphology analysis  

The surface of the woven geotextile was examined by scanning electron microscope (SEM). The 

investigation encompassed intact geotextile sample, as well as those exposed to the accelerated aging test 

(AAT) over three test periods (one, five, and six months). This analysis aimed to evaluate how the 

aggressive chemical agent influenced the geotextile's surface morphology. 

Scanning electron microscopy (SEM) images (Table 2 part a) demonstrate that the surfaces of the unaged 

fibers exhibit a relatively smooth morphology. Following one month of accelerated aging, the fibers 

maintain an intact surface devoid of visible cracks or microcavities, although initial signs of degradation 

are locally evident (Table 2 part b). Specifically, a few microcracks begin to manifest in isolated regions 

of certain fibers. These defects, however, remain sporadic and are discernible only through a 

comprehensive and systematic analysis of the samples, indicating that, at this juncture, the degradation 

process is still in its nascent stages. These surface changes can be attributed to hydrolysis, a mechanism 

that causes homogeneous degradation under the effect of H+ diffusivity within the polymer matrix 

(Launay et al., 1999, 1994). After five months of aging (Table 2 part c), the microcracks become markedly 

more prominent, extensively covering the entire surface of the fibers. The width of these cracks is 

estimated to be approximately 700 nm. After six months (Table 2 part d), the advancement of the 

degradation process is evidenced by an enlargement of the microcavities, with sizes now ranging between 

1 µm and 1.6 µm. This progression corroborates the cumulative effect of hydrolysis degradation, leading 

to the progressive rupture of the polymer chains (Krimi et al., 2016b).  
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Table 2. SEM micrographs illustrate the surface morphology of undamaged and damaged geotextile 

fibers subjected to accelerated aging test conducted over one, five, and six months. 

a) Geotextile fiber before aging test 

 
b) Geotextile fibers after exposure to accelerated aging for one month 

 
c) Geotextile fibers after exposure to accelerated aging for five months 

 
d) Geotextile fibers after exposure to accelerated aging for six months 
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3.3 Tensile behavior  

The mechanical performance of the geotextile was assessed following accelerated aging tests. This 

evaluation involved examining changes in maximum tensile strength (TSmax). The progression of this 

mechanical characteristic, expressed as retained values, is depicted in Figure 4a. Figure 4b shows the 

correlation between tensile strength, density, and the average cavity width. It should be noted that the 

average width of the microcavities was estimated using scanning electron microscopy (SEM). To do this, 

the width of several microcavities was measured after each degradation period, and then an average of 

these values was calculated to obtain a representative estimate. 

After one month of aging, no significant change in tensile strength was detected. However, extended 

exposure to aging conditions resulted in a notable degradation of mechanical strength (TSmax). A 

reduction in maximum tensile strength was recorded, amounting to 12.41% and 17.61% compared to the 

initial value after five and six months of aging, respectively. This decline in mechanical performance can 

be attributed to the formation of micro-cracks due to hydrolytic degradation (Table 2, parts c and d). 

These cracks serve as stress concentration zones, thereby weakening the geotextile structure and leading 

to a marked deterioration of its mechanical properties. Notably, the increase in crack diameter observed 

during aging correlates with a progressive decrease in tensile strength, as illustrated in Figure 4b. 

Furthermore, a strong correlation between the evolution of density and the material's strength was 

observed, particularly after six months of degradation (Figure 4b), which is another significant factor 

contributing to the loss of mechanical strength. This is likely due to the decrease in crystallinity (indicated 

by the decrease in density), as it is well established that the crystallinity of the polymer influences its 

mechanical strength (Spieckermann et al., 2010; Simões et al., 2012; Ewais and Rowe, 2014; Rozanski 

et al., 2018). However, after five months of degradation, this relationship is no longer evident (a notable 

reduction in strength was observed despite an increase in density). This can be explained by the 

predominance of another, more critical degradation mechanism related to the deterioration of the material 

surface. At this advanced stage of aging, physical alterations (cracks) may exert a more significant 

influence on the mechanical properties than the overall density of the material. 
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Figure 4. Changes in (a) maximum tensile strength; (b) maximum tensile strength, average micro-

crack width, and retained density over aging time. 

4 Conclusion  

This research thoroughly explored how exposure to an acidic environment affects the physical and 

mechanical characteristics of polyester geotextiles, focusing on alterations in density, surface 

morphology, and tensile properties.  
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The findings reveal that the density of geotextiles gradually increases during acid exposure, with a notable 

rise during five months, mainly due to physicochemical processes like hydrolysis, which drive chemical 

crystallization, and the thermal influence of the test temperature. Nonetheless, from the sixth month, a 

reduction in density was noted, likely resulting from the degradation of crystalline phases under 

prolonged acidic conditions.  

Examination of the surface morphology showed the gradual emergence of microcracks, which intensified 

over time, indicating the breaking of polymer chains. After five months, these cracks became more 

evident and spread across the entire fiber surface, hastening the degradation process.  

Chemical aging significantly affects mechanical behavior, causing a steady decline in tensile strength, 

especially after five and six months, which correlates with the development of microcracks and changes 

in density. However, the density increase after five months was insufficient to offset the loss in 

mechanical strength, underscoring the importance of the material's surface condition in evaluating its 

durability.  

These findings illustrate that the mechanical degradation of polyester geosynthetics in an acidic 

environment is a complex process, influenced by several interrelated factors, including changes in surface 

morphology and micromolecular degradation processes. Understanding these interactions is crucial for 

better assessing the longevity of geosynthetics used in infrastructure and for developing manufacturing 

strategies to enhance their performance in harsh environments, ensuring their long-term effectiveness. 
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